z-logo
open-access-imgOpen Access
Oceanic basalt continuous thermal demagnetization curves
Author(s) -
Matzka Jürgen,
Krása David
Publication year - 2007
Publication title -
geophysical journal international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.302
H-Index - 168
eISSN - 1365-246X
pISSN - 0956-540X
DOI - 10.1111/j.1365-246x.2007.03378.x
Subject(s) - basalt , geology , demagnetizing field , thermal , geophysics , seismology , petrology , magnetization , thermodynamics , physics , quantum mechanics , magnetic field
SUMMARY The palaeomagnetic standard technique of stepwise thermal demagnetization (STD), long regarded as unreliable for oceanic basalts that have undergone low temperature alteration, has recently been applied in a number of studies to characterize the natural remanent magnetization (NRM) of such rocks. In order to better understand STD data of oceanic basalts, and to possibly identify the magnetominerals that are carrying the NRM, we have carried out a number of continuous and STD experiments on seven oceanic basalt samples. During continuous thermal demagnetization (CTD), a sample is heated to a certain temperature and its NRM is measured during heating and subsequent cooling. Even when CTD reveals only titanomaghemite unblocking at 400°C as the remanence carrier, STD behaviour can be very complex and unblocking is observed at temperatures of up to 500°C and higher. CTD also allowed to identify a partial or full self‐reversal of NRM due to interaction between two types of magnetominerals in one sample. The higher degree of maghemitization of smaller titanomaghemite grains with respect to larger ones, which are less efficient in carrying the remanence, was seen for three samples by a shift of 80°C between the strong field thermomagnetic curve and the NRM measured at elevated temperature. In several cases, the identification of the NRM‐carrying magnetomineral was not possible from CTD data due to the ambiguity of Curie temperatures in the titanomagnetite/titanomaghemite system.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here