
Gravity anomalies and flexure of the lithosphere at Ascension Island
Author(s) -
Minshull T. A.,
Brozena J. M.
Publication year - 1997
Publication title -
geophysical journal international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.302
H-Index - 168
eISSN - 1365-246X
pISSN - 0956-540X
DOI - 10.1111/j.1365-246x.1997.tb01227.x
Subject(s) - lithosphere , geology , lithospheric flexure , volcano , seismology , gravity anomaly , ridge push , bathymetry , geophysics , pacific plate , tectonics , subduction , paleontology , oceanography , oil field
SUMMARY Ascension Island, in the northern South Atlantic, forms the summit of a volcanic edifice 60 km in diameter which places a substantial load on the underlying young oceanic lithosphere. An analysis of a combined data set of recent and historical surface‐gravity and bathymetry measurements on and around the island suggests that the lithosphere responds to this load by flexure equivalent to that of an elastic plate only ≈ 3 km thick, and that the mean density of the volcanic edifice is ≈ 2500 kg m ‐3 . A steep gravity gradient across the island cannot be explained by a simple flexural model and must be attributed to lateral density variations within the volcano itself. The effective elastic thickness is considerably less than the expected ≈ 12 km mechanical thickness of the ≈ 6 Ma lithosphere loaded by the volcano, and less even than zero‐age elastic thicknesses commonly observed at slow‐spreading ridges with axial rift valleys. The unusually small elastic thickness may be attributed to the combined effects of the high curvature beneath the island, which produces bending stresses that are limited by the yield stress envelope, localized heating of the lithosphere during emplacement of the island, and crustal thickening. When these factors are taken into account, the observed flexure is consistent with rheological models based on experimental rock mechanics.