z-logo
open-access-imgOpen Access
An explanation for USGS Station 6 record, 1979 Imperial Valley earthquake: a caustic induced by a sedimentary wedge
Author(s) -
Rial J. A.,
Pereyra V.,
Wojcik G. L.
Publication year - 1986
Publication title -
geophysical journal of the royal astronomical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.302
H-Index - 168
eISSN - 1365-246X
pISSN - 0016-8009
DOI - 10.1111/j.1365-246x.1986.tb04356.x
Subject(s) - geology , seismology , geological survey , sedimentary rock , caustic (mathematics) , paleontology , physics , mathematical physics
Summary. The largest earthquake‐induced acceleration yet recorded occurred at the United States Geological Survey's (USGS) Strong Motion Array Station 6 during the 1979 October 15, Imperial Valley, California earthquake. This large acceleration (1.74 g, vertical component) is anomalously strong considering the low magnitude of the event ( M = 6.4), and the fact that receivers in the immediate neighbourhood of Station 6 recorded much lower accelerations. Previous studies of the records by other investigators have suggested a number of explanations for the anomaly, several of which implicate the near‐receiver geological structure. We present a detailed time and frequency domain analysis of the acceleration records at Stations 6, 5, 7, 8 and Diff Array to suggest that the anomalous acceleration is the consequence of the focusing of the incoming body waves by the lens‐like effect of the sedimentary wedge between Imperial Valley and Brawley faults. The analyses include a detailed comparison of observed particle motions between neighbouring stations. Narrow band‐pass filtered particle motions at Station 6 reveal the interaction of multipath arrivals as well as the frequency‐dependent interference between them. Three‐dimensional ray tracing experiments confirm the fact that the faulted sedimentary wedge is capable of focusing P ‐waves near Station 6. The interpretation that best combines theoretical and observed results is that amplification was due to the formation of an elliptic umbilic caustic with focus near the surface.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here