
The dynamical origin of subduction zone topography
Author(s) -
Melosh H. J.,
Raefsky Arthur
Publication year - 1980
Publication title -
geophysical journal of the royal astronomical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.302
H-Index - 168
eISSN - 1365-246X
pISSN - 0016-8009
DOI - 10.1111/j.1365-246x.1980.tb04812.x
Subject(s) - geology , subduction , lithosphere , trench , slab , seismology , geophysics , lithospheric flexure , viscoelasticity , tectonics , chemistry , physics , organic chemistry , layer (electronics) , thermodynamics
Summary. Subduction zones are expressed topographically by long linear oceanic trenches flanked by a low outer rise on the seaward side and an island arc on the landward side. This topographic structure is reflected in free air gravity anomalies, suggesting that much of the topography originates from dynamical forces applied at the base of the crust. We have successfully reproduced the general topographic features of subduction zones by supposing that the stresses generated by the bending of the viscous lower lithosphere as it subducts are transmitted through the thin elastic upper portion of the lithosphere. The trench is due to a zone of extensional flow (associated with low pressure) in the upper part of the viscous lithosphere. The stresses in the subducting slab are computed using a finite element technique, assuming a Maxwell viscoelastic constitutive relation. Various dips (10 to 90°) were investigated, as well as depth dependent and non‐Newtonian (power law, n = 3) viscosities. Observed subduction zone dimensions are well reproduced by these models. The effective viscosity required at mid‐depth in the lithosphere is about 6 × 10 22 P. This low value is probably due to the stress dependence of the effective viscosity. However, these models also show that the topography of the subduction zone depends primarily upon the geometry of the subducting slab (dip, radius of curvature of the bend) rather than upon its rheology. Shear stresses beneath the trench reach maxima of approximately 50 MPa. An interesting feature of some solutions is a dynamically supported bench or platform between the trench and island arc.