z-logo
open-access-imgOpen Access
Laboratory studies of depositional DRM
Author(s) -
Barton C. E.,
McElhinny M. W.,
Edwards D. J.
Publication year - 1980
Publication title -
geophysical journal of the royal astronomical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.302
H-Index - 168
eISSN - 1365-246X
pISSN - 0016-8009
DOI - 10.1111/j.1365-246x.1980.tb04322.x
Subject(s) - remanence , settling , sedimentary depositional environment , magnetometer , geology , slurry , sediment , grain size , mineralogy , geomorphology , materials science , magnetization , composite material , magnetic field , environmental science , physics , structural basin , quantum mechanics , environmental engineering
Summary. Acquisition of magnetic remanence in slurries of fme grained organic muds settling in long tubes is investigated using a cryogenic magnetometer. The average settling behaviour of remanence carrying grains relative to the whole sediment gives information about the relative magnetic grain size spectrum, whereas the response of settled deposits to vibration gives an indication of the degree of alignment of particles and their average shape. Two classes of behaviour are apparent in both the time and field dependence of detrital remanent magnetization (DRM) acquisition. Dilute slurries settling in the Earth's field (analogous to detrital sedimentation) acquire a remanence which reaches a maximum after about 2 day, whereas for concentrated slurries (analogous to slumped or bioturbated sediments) this takes only a matter of minutes. The field dependence of DRM in dilute slurries is in plausible quantitative agreement with Stacey's extension of the classical Langevin expression for the susceptibility of a paramagnetic gas, whereas concentrated slurries show a quasi‐linear dependence of DRM on the applied field. Inclination errors are generally absent, but do appear in fields less than about 0.5 Oe, and when the magnetic fraction settles out preferentially. A weak negative dependence of DRM on temperature is found, but the results are too crude to provide a further test of Stacey's theory. Remanence acquisition in slurries settled in zero field indicates that short term post‐depositional magnetization processes are relatively unimportant in slurries that have ceased to compact rapidly. A large increase in remanence from naturally occurring sediments to slowly redeposited long cores, to rapidly settled slurries is best explained as a feature of compaction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here