
Regeneration niche of three epiphytic species of Gesneriaceae from Chilean rainforests: implications for the evolution of growth habits in Coronanthereae
Author(s) -
Salinas Fernanda,
Armesto Juan J.
Publication year - 2012
Publication title -
botanical journal of the linnean society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.872
H-Index - 68
eISSN - 1095-8339
pISSN - 0024-4074
DOI - 10.1111/j.1095-8339.2012.01256.x
Subject(s) - biology , epiphyte , rainforest , habit , niche , ecology , niche differentiation , regeneration (biology) , germination , temperate rainforest , ecological niche , niche segregation , gesneriaceae , old growth forest , botany , habitat , ecosystem , psychology , psychotherapist , microbiology and biotechnology
Ecological and evolutionary studies of the epiphytic growth habit in angiosperms are limited. In this article, we assess the relationship between growth habit and regeneration niche in Coronanthereae (Gesneriaceae) and discuss its implications for the evolution of epiphytism in this lineage. In the temperate rainforest of southern Chile, we quantified the vertical distribution and experimentally examined the regeneration niche of three endemic species of Coronanthereae. One species was a holoepiphyte, which was more frequent in the upper canopy, and two species were secondary hemiepiphytes, which decreased in abundance with tree height. Seed germination of the holoepiphyte was higher on tree bark substrates and under open canopy than on forest soil and in the shade. In contrast, seed germination of both secondary hemiepiphytes did not differ between substrates (bark vs. soil) or light conditions (light vs. shade). Seedling survival percentage of secondary hemiepiphytes was higher on forest soil and under a closed canopy, thus behaving as shade‐tolerant species. In turn, the holoepiphyte behaved as a shade‐intolerant species. The reconstruction of the ancestral growth habits and regeneration niches on the inferred phylogenetic tree of Coronanthereae revealed that the specialized regeneration niche of Sarmienta repens , characterized by requirements of shade intolerance and germination on tree bark, was coupled with the evolution of the holoepiphytic growth habit. We conclude that differentiation in the regeneration niche is a key process in the evolution of epiphytic growth habits in Coronanthereae. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society , 2012, 170 , 79–92.