
Cryptic diversity within the endemic prehensile‐tailed gecko Urocotyledon inexpectata across the Seychelles Islands: patterns of phylogeographical structure and isolation at the multilocus level
Author(s) -
ROCHA SARA,
HARRIS D. JAMES,
POSADA DAVID
Publication year - 2011
Publication title -
biological journal of the linnean society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.906
H-Index - 112
eISSN - 1095-8312
pISSN - 0024-4066
DOI - 10.1111/j.1095-8312.2011.01710.x
Subject(s) - biology , phylogeography , biological dispersal , archipelago , vicariance , ecology , genetic diversity , biodiversity hotspot , endemism , genetic structure , isolation by distance , evolutionary biology , species complex , genetic divergence , lineage (genetic) , biodiversity , population , phylogenetic tree , genetic variation , sociology , gene , biochemistry , demography
The deciphering of the process of genetic differentiation of species with insular distributions is relevant for biogeographical and conservation reasons. Despite their importance as old gondwanic islands and part of the western Indian Ocean biodiversity hotspot, little is known about the genetic structure of taxa from the Seychelles Islands. We have examined the patterns of structure and isolation within Urocotyledon inexpectata (Reptilia: Geckkonidae), an endemic species from this archipelago. Genetic diversity was screened from populations across the archipelago for both mitochondrial and nuclear genes. Gene genealogies and model‐based inference were used to explore patterns and timings of isolation between the main lineages. High levels of genetic diversity were found for the mitochondrial and some of the nuclear markers. This species harbours at least two highly differentiated lineages, exclusively distributed across the northern and southern groups of the islands. The main split between these was dated back to the Miocene–late Pliocene, but isolation events throughout the Pliocene and Pleistocene were also inferred. Migration between groups of islands was apparently nonexistent, except for one case. The low dispersal capabilities of this species, together with the intrinsic fragmented nature of its geographical distribution, seem to have resulted in highly structured populations, despite the cyclic periods of contact between the different island groups. These populations may currently represent more than one species, making U. inexpectata another example of a morphologically cryptic lineage with deep genetic divergence within gekkonids. The observed patterns suggest a hypothetical biogeographic scenario (of a main north–south phylogeographic break) for the Seychelles that can be further tested with the exploration of the phylogeographic structure of other Seychellois taxa. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society , 2011, 104 , 177–191.