z-logo
open-access-imgOpen Access
Wing pigmentation in Calopteryx damselflies: a role in thermoregulation?
Author(s) -
OUTOMURO DAVID,
OCHARAN FRANCISCO J.
Publication year - 2011
Publication title -
biological journal of the linnean society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.906
H-Index - 112
eISSN - 1095-8312
pISSN - 0024-4066
DOI - 10.1111/j.1095-8312.2011.01641.x
Subject(s) - biology , thermoregulation , damselfly , wing , zoology , sexual selection , ecology , odonata , engineering , aerospace engineering
Body melanization may show adaptive variation related to thermoregulation ability, and it is to be expected that the degree of melanization will change among populations or closely related species across environmental gradients of solar radiation and/or environmental temperature. Some melanized secondary sexual traits may also play a role in sexual selection, leading to interpopulation variation, which would not be predicted by thermoregulation pressures alone. We studied the relationships between the interpopulation variation in wing pigmentation level (i.e. melanized secondary sexual trait) of two closely related species of Calopteryx damselfly, and both solar radiation and maximum environmental temperature estimates. Wing pigmentation differs between these species, is gender specific and is used in species' discrimination. Only Calopteryx virgo meridionalis males showed a significant negative partial correlation between wing pigmentation degree and temperature. However, C. virgo meridionalis females showed a positive significant partial correlation between wing pigmentation degree and solar radiation. Wing pigmentation in Calopteryx xanthostoma males was not related to solar radiation or temperature. Thus, thermoregulation pressures poorly explained the observed variations in wing pigmentation between populations, although they might have an adaptive significance at the species' level. As wing pigmentation showed important latitudinal variation, several other selection pressures which might act on melanized traits are briefly discussed. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society , 2011, 103 , 36–44.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here