
Snake diets and the deep history hypothesis
Author(s) -
COLSTON TIMOTHY J.,
COSTA GABRIEL C.,
VITT LAURIE J.
Publication year - 2010
Publication title -
biological journal of the linnean society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.906
H-Index - 112
eISSN - 1095-8312
pISSN - 0024-4066
DOI - 10.1111/j.1095-8312.2010.01502.x
Subject(s) - biology , ecology , niche , competition (biology) , divergence (linguistics) , clade , phylogenetics , predation , ecological niche , life history theory , evolutionary biology , life history , habitat , philosophy , linguistics , biochemistry , gene
The structure of animal communities has long been of interest to ecologists. Two different hypotheses have been proposed to explain origins of ecological differences among species within present‐day communities. The competition–predation hypothesis states that species interactions drive the evolution of divergence in resource use and niche characteristics. This hypothesis predicts that ecological traits of coexisting species are independent of phylogeny and result from relatively recent species interactions. The deep history hypothesis suggests that divergences deep in the evolutionary history of organisms resulted in niche preferences that are maintained, for the most part, in species represented in present‐day assemblages. Consequently, ecological traits of coexisting species can be predicted based on phylogeny regardless of the community in which individual species presently reside. In the present study, we test the deep history hypothesis along one niche axis, diet, using snakes as our model clade of organisms. Almost 70% of the variation in snake diets is associated with seven major divergences in snake evolutionary history. We discuss these results in the light of relevant morphological, behavioural, and ecological correlates of dietary shifts in snakes. We also discuss the implications of our results with respect to the deep history hypothesis. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society , 2010, 101 , 476–486.