
Island‐like radiation of Saussurea (Asteraceae: Cardueae) triggered by uplifts of the Qinghai–Tibetan Plateau
Author(s) -
WANG YUJIN,
SUSANNA ALFONSO,
VON RAABSTRAUBE ECKHARD,
MILNE RICHARD,
LIU JIANQUAN
Publication year - 2009
Publication title -
biological journal of the linnean society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.906
H-Index - 112
eISSN - 1095-8312
pISSN - 0024-4066
DOI - 10.1111/j.1095-8312.2009.01225.x
Subject(s) - subgenus , biology , polyphyly , lineage (genetic) , monophyly , genus , clade , adaptive radiation , endemism , phylogenetic tree , ecology , biochemistry , gene
Increasing evidence suggests that geological or climatic events in the past triggered the radiative diversification of both animals and plants on islands as well as continents. The Qinghai–Tibetan Plateau (QTP) has been extensively uplifted since the Miocene, but there is little information on possible links between these events and biological diversification in this and adjacent regions. Partly to explore such links, we have examined the diversification of Saussurea (Asteraceae: Cardueae), a species‐rich genus that is mostly endemic to QTP, but also occurs in arid highlands elsewhere in the Northern Hemisphere. The phylogenetic analyses were conducted on the basis of the nuclear (internal transcribed spacer, ITS) and plastid ( trnL‐F and psbA‐trnH ) sequences from 55 species, representing 19 sections from all six subgenera of Saussurea , and species from 15 genera of the Cardueae. The results suggest that the currently circumscribed genus Saussurea ( s.l. ) is a polyphyletic group and that five sections should be excluded from the genus. Samples from the other 14 sections (representing five subgenera) clustered as a monophyletic group (here designated the Saussurea s.s. lineage, SSSL) with high statistical support. However, none of the analyses (nuclear, plastid or combined) resolved SSSL's infrageneric phylogeny, and the parallel clades of the lineage indicate that island‐like adaptive radiation occurred. Furthermore, this radiation appears to have occurred 14–7 Mya, during the period of the major uplift events of QTP. Thus, our results support the hypothesis that geological events may play important roles in driving biological diversification through continental radiation. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 893–903.