z-logo
open-access-imgOpen Access
The evolutionary history of krill inferred from nuclear large subunit rDNA sequence analysis
Author(s) -
JARMAN SIMON N.
Publication year - 2001
Publication title -
biological journal of the linnean society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.906
H-Index - 112
eISSN - 1095-8312
pISSN - 0024-4066
DOI - 10.1111/j.1095-8312.2001.tb01357.x
Subject(s) - biology , krill , euphausiacea , lineage (genetic) , ribosomal dna , antarctic krill , crustacean , phylogenetic tree , zoology , evolutionary biology , euphausia , ecology , genetics , gene
Early events in the speciation history of krill (Malacostraca: Euphausiacea), an abundant group of extant pelagic crustaceans, were studied with slowly evolving nuclear DNA sequences (large subunit ribosomal DNA, 28S rDNA). Krill have no fossil record, so very little is known about their paleobiology. The timing of past speciation events in krill was estimated by comparing change in their 28S rDNA to change in the 28S rDNA of their close relatives that do have a fossil record. Relationships between krill genera were also studied by phylogenetic analysis of partial 28S rDNA sequences. The analyses estimated the time that the last common ancestor of the krill family Euphausiidae lived to be the lower Cretaceous about 130 million years ago (Mya). Two lineages of krill survived the end Cretaceous extinctions 65 Mya and the modern genera of krill were established before the end of the Palaeogene 23 Mya.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here