Premium
Biotic interactions are more often important at species’ warm versus cool range edges
Author(s) -
Paquette Alexandra,
Hargreaves Anna L.
Publication year - 2021
Publication title -
ecology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.852
H-Index - 265
eISSN - 1461-0248
pISSN - 1461-023X
DOI - 10.1111/ele.13864
Subject(s) - abiotic component , ecology , biotic component , range (aeronautics) , climate change , biology , environmental science , materials science , composite material
Predicting which ecological factors constrain species distributions is a fundamental ecological question and critical to forecasting geographic responses to global change. Darwin hypothesised that abiotic factors generally impose species’ high‐latitude and high‐elevation (typically cool) range limits, whereas biotic interactions more often impose species’ low‐latitude/low‐elevation (typically warm) limits, but empirical support has been mixed. Here, we clarify three predictions arising from Darwin's hypothesis and show that previously mixed support is partially due to researchers testing different predictions. Using a comprehensive literature review (885 range limits), we find that biotic interactions, including competition, predation and parasitism, contributed to >60% of range limits and influenced species’ warm limits more often than cool limits. Abiotic factors contributed more often than biotic interactions to cool range limits, but temperature contributed frequently to both cool and warm limits. Our results suggest that most range limits will be sensitive to climate warming, but warm‐limit responses in particular will depend strongly on biotic interactions.