z-logo
open-access-imgOpen Access
Two-stage least squares as minimum distance
Author(s) -
Frank Windmeijer
Publication year - 2018
Publication title -
econometrics journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.861
H-Index - 36
eISSN - 1368-423X
pISSN - 1368-4221
DOI - 10.1111/ectj.12115
Subject(s) - homoscedasticity , heteroscedasticity , estimator , instrumental variable , mathematics , minimum variance unbiased estimator , test statistic , statistics , least squares function approximation , statistic , ordinary least squares , linear model , statistical hypothesis testing
SummaryThe two-stage least-squares (2SLS) instrumental-variables (IV) estimator for the parameters in linear models with a single endogenous variable is shown to be identical to an optimal minimum-distance (MD) estimator based on the individual instrument-specific IV estimators. The 2SLS estimator is a linear combination of the individual estimators, with the weights determined by their variances and covariances under conditional homoskedasticity. It is further shown that the Sargan test statistic for overidentifying restrictions is the same as the MD criterion test statistic. This provides an intuitive interpretation of the Sargan test. The equivalence results also apply to the efficient two-step generalized method of moments and robust optimal MD estimators and criterion functions, allowing for general forms of heteroskedasticity. It is further shown how these results extend to the linear overidentified IV model with multiple endogenous variables.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom