z-logo
open-access-imgOpen Access
Model averaging in predictive regressions
Author(s) -
Liu ChuAn,
Kuo BiingShen
Publication year - 2016
Publication title -
the econometrics journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.861
H-Index - 36
eISSN - 1368-423X
pISSN - 1368-4221
DOI - 10.1111/ectj.12063
Subject(s) - mathematics , estimator , frequentist inference , statistics , jackknife resampling , econometrics , monte carlo method , bayesian inference , bayesian probability
Summary In this paper, we consider forecast combination in a predictive regression. We construct the point forecast by combining predictions from all possible linear regression models, given a set of potentially relevant predictors. We derive the asymptotic risk of least‐squares averaging estimators in a local asymptotic framework. We then develop a frequentist model averaging criterion, an asymptotically unbiased estimator of the asymptotic risk, to select forecast weights. Monte Carlo simulations show that our averaging estimator compares favourably with alternative methods, such as weighted AIC, weighted BIC, Mallows model averaging and jackknife model averaging. The proposed method is applied to stock return predictions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom