z-logo
open-access-imgOpen Access
Bacterial secreted effectors and caspase‐3 interactions
Author(s) -
Wall Daniel M.,
McCormick Beth A.
Publication year - 2014
Publication title -
cellular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.542
H-Index - 138
eISSN - 1462-5822
pISSN - 1462-5814
DOI - 10.1111/cmi.12368
Subject(s) - caspase , effector , biology , microbiology and biotechnology , caspase 2 , apoptosis , programmed cell death , caspase 8 , cell , organism , biochemistry , genetics
Summary Apoptosis is a critical process that intrinsically links organism survival to its ability to induce controlled death. Thus, functional apoptosis allows organisms to remove perceived threats to their survival by targeting those cells that it determines pose a direct risk. Central to this process are apoptotic caspases, enzymes that form a signalling cascade, converting danger signals via initiator caspases into activation of the executioner caspase, caspase‐3. This enzyme begins disassembly of the cell by activating DNA degrading enzymes and degrading the cellular architecture. Interaction of pathogenic bacteria with caspases, and in particular, caspase‐3, can therefore impact both host cell and bacterial survival. With roles outside cell death such as cell differentiation, control of signalling pathways and immunomodulation also being described for caspase‐3, bacterial interactions with caspase‐3 may be of far more significance in infection than previously recognized. In this review, we highlight the ways in which bacterial pathogens have evolved to subvert caspase‐3 both through effector proteins that directly interact with the enzyme or by modulating pathways that influence its activation and activity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here