
Seedling mycorrhiza: a discussion of origin and evolution in O rchidaceae
Author(s) -
Rasmussen Hanne N.,
Rasmussen Finn N.
Publication year - 2014
Publication title -
botanical journal of the linnean society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.872
H-Index - 68
eISSN - 1095-8339
pISSN - 0024-4074
DOI - 10.1111/boj.12170
Subject(s) - biology , orchidaceae , monophyly , botany , seedling , clade , evolutionary biology , phylogenetic tree , genetics , gene
Recent phylogenetic analyses confirm the monophyly of O rchidaceae as sister group to the remainder of A sparagales, and identify the sequence of early branching lineages in O rchidaceae. Orchid seedling mycorrhiza ( OSM ) involving rhizoctonious fungi is distributed widely in all subfamilies, including the first branching ones, and its status as a founding event is thus supported. OSM is recognized as one element in the character syndrome that distinguishes orchid biology, and we argue that OSM was the first to evolve. We also discuss the possible evolutionary origins of OSM in A sparagales. The prevalent mycobionts suggest a derivation from a pathogenic relationship, and sister group comparison offers little support for derivation from other mycorrhizal relationships. A combination of in situ sowings and molecular identification of seedling mycobionts has established that a broad range of fungi besides rhizoctonious mycelia are presently involved in OSM , presumably evolving secondarily and often in parallel in different orchid clades. Structural features and internal patterns of mycobiont behaviour appear to have remained largely the same, implying that OSM needs only minor physiological adjustment to accommodate new mycobionts. Such modifications will have involved checkpoints for recognition/rejection and the formation/breakdown of pelotons. These physiological mechanisms are so far largely unknown. The trophic versatility of the mycobionts and the apparently easy shifts could be a main factor in the ecological adaptability of orchids and proliferation of the family. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society , 2014, 175 , 313–327.