z-logo
Premium
A stacked approach for chained equations multiple imputation incorporating the substantive model
Author(s) -
Beesley Lauren J.,
Taylor Jeremy M. G.
Publication year - 2021
Publication title -
biometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.298
H-Index - 130
eISSN - 1541-0420
pISSN - 0006-341X
DOI - 10.1111/biom.13372
Subject(s) - imputation (statistics) , missing data , covariate , estimator , computer science , data mining , data set , statistics , mathematics , machine learning , artificial intelligence
Multiple imputation by chained equations (MICE) has emerged as a popular approach for handling missing data. A central challenge for applying MICE is determining how to incorporate outcome information into covariate imputation models, particularly for complicated outcomes. Often, we have a particular analysis model in mind, and we would like to ensure congeniality between the imputation and analysis models. We propose a novel strategy for directly incorporating the analysis model into the handling of missing data. In our proposed approach, multiple imputations of missing covariates are obtained without using outcome information. We then utilize the strategy of imputation stacking, where multiple imputations are stacked on top of each other to create a large data set. The analysis model is then incorporated through weights. Instead of applying Rubin's combining rules, we obtain parameter estimates by fitting a weighted version of the analysis model on the stacked data set. We propose a novel estimator for obtaining standard errors for this stacked and weighted analysis. Our estimator is based on the observed data information principle in Louis' work and can be applied for analyzing stacked multiple imputations more generally. Our approach for analyzing stacked multiple imputations is the first method that can be easily applied (using R package StackImpute) for a wide variety of standard analysis models and missing data settings.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here