z-logo
open-access-imgOpen Access
Antifouling polyurethanes to fight device‐related staphylococcal infections: synthesis, characterization, and antibiofilm efficacy
Author(s) -
Francolini Iolanda,
Donelli Gianfranco,
Vuotto Claudia,
Baroncini Fabrizio Alessandro,
Stoodley Paul,
Taresco Vincenzo,
Martinelli Andrea,
D'Ilario Lucio,
Piozzi Antonella
Publication year - 2014
Publication title -
pathogens and disease
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.983
H-Index - 105
ISSN - 2049-632X
DOI - 10.1111/2049-632x.12155
Subject(s) - biofouling , biofilm , staphylococcus epidermidis , adhesion , polymer , materials science , microbiology and biotechnology , chemistry , bacteria , staphylococcus aureus , biology , composite material , biochemistry , membrane , genetics
In hospital settings, biofilm‐based medical device‐related infections are considered a threat to patients, the sessile growing bacteria playing a key role in the spreading of healthcare‐associated infections. In recent decades, the design of antifouling coatings for medical devices able to prevent microbial adhesiveness has emerged as one of the most promising strategies to face this important issue. In order to obtain suitable antifouling materials, segmented polyurethanes characterized by a hard/soft domain structure, having the same hard domain but a variable soft domain, have been synthesized. The soft domain was constituted by one of the following macrodiols: polypropylenoxide ( PPO ), polycaprolactide ( PCL ), and poly‐l‐lactide ( PLA ). The effects of the polymer hydrophilicity and the degree of hard/soft domain separation on antifouling properties of the synthesized polyurethanes were investigated. Microbial adherence assays evidenced as the polymers containing PCL or PLA were able to significantly reduce the adhesion of Staphylococcus epidermidis with respect to the PPO ‐containing polymer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here