z-logo
open-access-imgOpen Access
Pixel and Feature Transfer Fusion for Unsupervised Cross-Dataset Person Reidentification
Author(s) -
Yang Yang,
Guan'an Wang,
Prayag Tiwari,
Hari Mohan Pandey,
Zhen Lei
Publication year - 2021
Publication title -
ieee transactions on neural networks and learning systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.882
H-Index - 212
eISSN - 2162-2388
pISSN - 2162-237X
DOI - 10.1109/tnnls.2021.3128269
Subject(s) - computing and processing , communication, networking and broadcast technologies , components, circuits, devices and systems , general topics for engineers
Recently, unsupervised cross-dataset person reidentification (Re-ID) has attracted more and more attention, which aims to transfer knowledge of a labeled source domain to an unlabeled target domain. There are two common frameworks: one is pixel-alignment of transferring low-level knowledge, and the other is feature-alignment of transferring high-level knowledge. In this article, we propose a novel recurrent autoencoder (RAE) framework to unify these two kinds of methods and inherit their merits. Specifically, the proposed RAE includes three modules, i.e., a feature-transfer (FT) module, a pixel-transfer (PT) module, and a fusion module. The FT module utilizes an encoder to map source and target images to a shared feature space. In the space, not only features are identity-discriminative but also the gap between source and target features is reduced. The PT module takes a decoder to reconstruct original images with its features. Here, we hope that the images reconstructed from target features are in the source style. Thus, the low-level knowledge can be propagated to the target domain. After transferring both high- and low-level knowledge with the two proposed modules above, we design another bilinear pooling layer to fuse both kinds of knowledge. Extensive experiments on Market-1501, DukeMTMC-ReID, and MSMT17 datasets show that our method significantly outperforms either pixel-alignment or feature-alignment Re-ID methods and achieves new state-of-the-art results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here