Learning to Estimate Slide Comprehension in Classrooms with Support Vector Machines
Author(s) -
Nimit Pattanasri,
Masayuki Mukunoki,
Michihiko Minoh
Publication year - 2013
Publication title -
ieee transactions on learning technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.376
H-Index - 47
ISSN - 1939-1382
DOI - 10.1109/tlt.2011.22
Subject(s) - computing and processing , general topics for engineers
Comprehension assessment is an essential tool in classroom learning. However, the judgment often relies on experience of an instructor who makes observation of students' behavior during the lessons. We argue that students should report their own comprehension explicitly in a classroom. With students' comprehension made available at the slide level, we apply a machine learning technique to classify presentation slides according to comprehension levels. Our experimental result suggests that presentation-based features are as predictive as bag-of-words feature vector which is proved successful in text classification tasks. Our analysis on presentation-based features reveals possible causes of poor lecture comprehension.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom