z-logo
open-access-imgOpen Access
User-Specific Adaptive Fine-Tuning for Cross-Domain Recommendations
Author(s) -
Lei Chen,
Fajie Yuan,
Jiaxi Yang,
Xiangnan He,
Chengming Li,
Min Yang
Publication year - 2021
Publication title -
ieee transactions on knowledge and data engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.36
H-Index - 174
eISSN - 1558-2191
pISSN - 1041-4347
DOI - 10.1109/tkde.2021.3119619
Subject(s) - computing and processing
Making accurate recommendations for cold-start users has been a longstanding and critical challenge for recommender systems (RS). Cross-domain recommendations (CDR) offer a solution to tackle such a cold-start problem when there is no sufficient data for the users who have rarely used the system. An effective approach in CDR is to leverage the knowledge (e.g., user representations) learned from a related but different domain and transfer it to the target domain. Fine-tuning works as an effective transfer learning technique for this objective, which adapts the parameters of a pre-trained model from the source domain to the target domain. However, current methods are mainly based on the global fine-tuning strategy: the decision of which layers of the pre-trained model to freeze or fine-tune is taken for all users in the target domain. In this paper, we argue that users in RS are personalized and should have their own fine-tuning policies for better preference transfer learning. As such, we propose a novel User-specific Adaptive Fine-tuning method (UAF), selecting which layers of the pre-trained network to fine-tune, on a per user basis. Specifically, we devise a policy network with three alternative strategies to automatically decide which layers to be fine-tuned and which layers to have their parameters frozen for each user. Extensive experiments show that the proposed UAF exhibits significantly better and more robust performance for user cold-start recommendation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here