A Decomposition Framework for Image Denoising Algorithms
Author(s) -
Gabriela Ghimpeteanu,
Thomas Batard,
Marcelo Bertalmio,
Stacey Levine
Publication year - 2015
Publication title -
ieee transactions on image processing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.778
H-Index - 288
eISSN - 1941-0042
pISSN - 1057-7149
DOI - 10.1109/tip.2015.2498413
Subject(s) - signal processing and analysis , communication, networking and broadcast technologies , computing and processing
In this paper, we consider an image decomposition model that provides a novel framework for image denoising. The model computes the components of the image to be processed in a moving frame that encodes its local geometry (directions of gradients and level lines). Then, the strategy we develop is to denoise the components of the image in the moving frame in order to preserve its local geometry, which would have been more affected if processing the image directly. Experiments on a whole image database tested with several denoising methods show that this framework can provide better results than denoising the image directly, both in terms of Peak signal-to-noise ratio and Structural similarity index metrics.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom