Detecting Hoaxes, Frauds, and Deception in Writing Style Online
Author(s) -
Sadia Afroz,
Michael Brennan,
Rachel Greenstadt
Publication year - 2012
Publication title -
2012 ieee symposium on security and privacy
Language(s) - English
Resource type - Conference proceedings
eISSN - 2375-1207
pISSN - 1081-6011
ISBN - 978-0-7695-4681-0
DOI - 10.1109/sp.2012.34
Subject(s) - computing and processing , communication, networking and broadcast technologies , components, circuits, devices and systems
In digital forensics, questions often arise about the authors of documents: their identity, demographic background, and whether they can be linked to other documents. The field of stylometry uses linguistic features and machine learning techniques to answer these questions. While stylometry techniques can identify authors with high accuracy in non-adversarial scenarios, their accuracy is reduced to random guessing when faced with authors who intentionally obfuscate their writing style or attempt to imitate that of another author. While these results are good for privacy, they raise concerns about fraud. We argue that some linguistic features change when people hide their writing style and by identifying those features, stylistic deception can be recognized. The major contribution of this work is a method for detecting stylistic deception in written documents. We show that using a large feature set, it is possible to distinguish regular documents from deceptive documents with 96.6% accuracy (F-measure). We also present an analysis of linguistic features that can be modified to hide writing style.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom