Finding the Optimal Balance between Over and Under Approximation of Models Inferred from Execution Logs
Author(s) -
Paolo Tonella,
Alessandro Marchetto,
Cu Duy Nguyen,
Yue Jia,
Kiran Lakhotia,
Mark Harman
Publication year - 2012
Publication title -
2012 ieee fifth international conference on software testing, verification and validation
Language(s) - English
Resource type - Conference proceedings
pISSN - 2159-4848
ISBN - 978-0-7695-4670-4
DOI - 10.1109/icst.2012.82
Subject(s) - computing and processing
Models inferred from execution traces (logs) may admit more behaviours than those possible in the real system (over-approximation) or may exclude behaviours that can indeed occur in the real system (under-approximation). Both problems negatively affect model based testing. In fact, over-approximation results in infeasible test cases, i.e., test cases that cannot be activated by any input data. Under-approximation results in missing test cases, i.e., system behaviours that are not represented in the model are also never tested. In this paper we balance over- and under-approximation of inferred models by resorting to multi-objective optimization achieved by means of two search-based algorithms: A multi-objective Genetic Algorithm (GA) and the NSGA-II. We report the results on two open-source web applications and compare the multi-objective optimization to the state-of-the-art KLFA tool. We show that it is possible to identify regions in the Pareto front that contain models which violate fewer application constraints and have a higher bug detection ratio. The Pareto fronts generated by the multi-objective GA contain a region where models violate on average 2% of an application's constraints, compared to 2.8% for NSGA-II and 28.3% for the KLFA models. Similarly, it is possible to identify a region on the Pareto front where the multi-objective GA inferred models have an average bug detection ratio of 110 : 3 and the NSGA-II inferred models have an average bug detection ratio of 101 : 6. This compares to a bug detection ratio of 310928 : 13 for the KLFA tool.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom