z-logo
open-access-imgOpen Access
Human Gait Recognition
Author(s) -
Rong Zhang,
Christian Vogler,
Dimitris N. Metaxas
Publication year - 2004
Publication title -
proceedings of the 2004 ieee computer society conference on computer vision and pattern recognition, 2004. cvpr 2004.
Language(s) - English
Resource type - Book series
ISBN - 0-7695-2158-4
DOI - 10.1109/cvpr.2004.87
The reliable extraction of characteristic gait features from image sequences and their recognition are two important issues in gait recognition. In this paper, we propose a novel 2-step, model-based approach to gait recognition by employing a 5-link biped locomotion human model. We first extract the gait features from image sequences using the Metropolis-Hasting method. Hidden Markov Models are then trained based on the frequencies of these feature trajectories, from which recognition is performed. As it is entirely based on human gait, our approach is robust to different type of clothes the subjects wear. The model-based gait feature extraction step is insensitive to noise, cluttered background or even moving background. Furthermore, this approach also minimizes the size of the data required for recognition compared to model-free algorithms. We applied our method to both the USF Gait Challenge data-set and CMU MoBo data-set, and achieved recognition rate of 61% and 96%, respectively. The results suggest that the recognition rate is significantly limited by the distance of the subject to the camera.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom