z-logo
open-access-imgOpen Access
Fractional-Order Predictive PI Controller for Dead-Time Processes With Set-Point and Noise Filtering
Author(s) -
P. Arun Mozhi Devan,
Fawnizu Azmadi B. Hussin,
Rosdiazli Ibrahim,
Kishore Bingi,
Hakim Q. A. Abdulrab
Publication year - 2020
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2020.3029068
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
In most of the industrial process plants, PI/PID controllers have been widely used because of its simple design, easy tuning, and operational advantages. However, the performance of these controllers degrades for the processes with long dead-time and variation in set-point. Up next, a PPI controller is designed based on the Smith predictor to handle dead-time processes by compensation technique, but it failed to achieve adequate performance in the presence of external noise, large disturbances, and higher-order systems. Furthermore, the model-based controllers structure is complex in nature and requires the exact model of the process with more tunable parameters. Therefore, in this research, a fractional-order predictive PI controller has been proposed for dead-time processes with added filtering abilities. The controller uses the dead-time compensation characteristics of the Smith predictor and the fractional-order controller's robustness nature. For the high peak overshoot, external noise, and disturbance problems, a new set-point and noise filtering technique is proposed, and later it is compared with different conventional methods. In servo and regulatory operations, the proposed controller and filtering techniques produced optimal performance. Multiple real-time industrial process models are simulated with long dead-time to evaluate the proposed technique's flexibility, set-point tracking, disturbance rejection, signal smoothing, and dead-time compensation capabilities.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom