Kuramoto-Desync: Distributed and Fair Resource Allocation in a Wireless Network
Author(s) -
Ui-Seong Yu,
Hyun-Ho Choi,
Jung-Ryun Lee
Publication year - 2019
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2019.2932425
Subject(s) - computer science , distributed computing , resource allocation , computer network , scalability , wireless network , synchronization (alternating current) , time division multiple access , convergence (economics) , kuramoto model , node (physics) , network topology , resource management (computing) , wireless , topology (electrical circuits) , telecommunications , channel (broadcasting) , mathematics , structural engineering , combinatorics , database , engineering , economics , economic growth
With recent rapid increases in the number of devices connected to wireless networks, the importance of scalable radio resource management operating in a distributed manner and the role of fairness among nodes are critical aspects in ensuring reliable services to numerous nodes in such network environments. In this paper, we consider the Kuramoto model for achieving fair and distributed radio resource allocation in a wireless network. Because, the conventional Kuramoto model is designed for synchronization only and is thus not suitable for fair resource allocation, we propose a modified Kuramoto-Desync model, whose purpose is to achieve fair resource allocation among nodes in a distributed manner. The proposed Kuramoto-Desync model evenly spaces the phases of all the nodes in the network. By mapping the evenly spaced phase interval of each node to the time-division multiple access or TDMA-based data time slot, we achieve fair resource allocation among contending nodes in a distributed way. The necessary condition for the convergence of the Kuramoto-Desync model is analyzed. The simulation results show that the proposed model successfully performs fair resource allocation even in dynamic network topology and that the convergence speed of the proposed model is quite stable compared to that of the comparison model.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom