z-logo
open-access-imgOpen Access
Chaos Enhanced Bacterial Foraging Optimization for Global Optimization
Author(s) -
Qian Zhang,
Huiling Chen,
Jie Luo,
Yueting Xu,
Chengwen Wu,
Chengye Li
Publication year - 2018
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2018.2876996
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
The recently developed Bacterial Foraging Optimization algorithm (BFO) is a nature-inspired optimization algorithm based on the foraging behavior of Escherichia coli. Due to its simplicity and effectiveness, BFO has been applied widely in many engineering and scientific fields. However, when dealing with more complex optimization problems, especially high dimensional and multimodal problems, BFO performs poorly in convergence compared to other nature-inspired optimization techniques. In this paper, we therefore propose an improved BFO, termed ChaoticBFO, which combines two chaotic strategies to achieve a more suitable balance between exploitation and exploration. Specifically, a chaotic initialization strategy is incorporated into BFO for bacterial population initialization to achieve acceleration throughout early steps of the proposed algorithm. Then, a chaotic local search with a `shrinking' strategy is introduced into the chemotaxis step to escape from local optimum. The performance of ChaoticBFO was validated on 23 numerical well-known benchmark functions by comparing with 10 other competitive metaheuristic algorithms. Moreover, it was applied to two real-world benchmarks from IEEE CEC 2011. The experimental results demonstrate that ChaoticBFO is superior to its counterparts in both convergence speed and solution quality in most of the cases. This paper is of great significance for promoting the research, improvement and application of the BFO algorithm.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom