Autoencoder-Combined Generative Adversarial Networks for Synthetic Image Data Generation and Detection of Jellyfish Swarm
Author(s) -
Kyukwang Kim,
Hyun Myung
Publication year - 2018
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2018.2872025
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Image-based sensing of jellyfish is important as they can cause great damage to the fisheries and seaside facilities and need to be properly controlled. In this paper, we present a deep-learning-based technique to generate a synthetic image of the jellyfish easily with autoencoder-combined generative adversarial networks. The proposed system can easily generate simple images with a smaller number of data sets compared with other generative networks. The generated output showed high similarity with the real-image data set. The application using a fully convolutional network and regression network to estimate the size of the jellyfish swarm was also demonstrated, and showed high accuracy during the estimation test.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom