z-logo
open-access-imgOpen Access
A Robust Sparse Representation Based Pattern Recognition Approach for Myoelectric Control
Author(s) -
Yanjuan Geng,
Yatao Ouyang,
Oluwarotimi Williams Samuel,
Shixiong Chen,
Xiaoqiang Lu,
Chuang Lin,
Guanglin Li
Publication year - 2018
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2018.2851282
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Interferences in the form of white Gaussian noise (WGN) are inevitable during long-term electromyogram (EMG) recordings. Even with the aid of advanced signal denoising techniques, such an intermittent interference is hardly detected and attenuated in the practical use of EMG-driven control systems. Hence, a robust pattern recognition scheme that is invariant to noise contamination would potentially aid the realization of an efficient EMG-based pattern recognition (EMG-PR) control system. To this end, an EMG-PR scheme driven by sparse representation-based classification (SRC) algorithm and root mean square (rms) descriptor (RMS-SRC) is proposed in this paper. The accuracy and the robustness of the proposed scheme were investigated using the high-density surface EMG recordings from 12 traumatic braininjured patients and 5 post-stroke survivors. For benchmark comparison, another three different feature sets and four pattern recognition algorithms were considered. The optimal pattern recognition schemes with respect to each feature-classifier combination were first selected in the absence of WGN contamination. Then, six levels of WGN with a signal-to-noise ratio (SNR) ranging from 5 to 30 dB were added into the EMG recordings, respectively, to mimic the different WGN interferences. Our result showed that the proposed RMS-SRC scheme could achieve a similar accuracy with the benchmark schemes in the presence of limited noise contamination (0-15 dB), and significantly outperformed the other schemes when the SNR of WGN increased (20-30 dB). More notably, the RMS-SRC scheme significantly outperformed the other pattern recognition schemes when the WGN existed in either training set or testing set only. The findings proved the comparative advantage of the proposed RMS-SRC pattern recognition scheme over the other currently used schemes in the myoelectric control. Thus, the proposed scheme would potentially facilitate the development of EMG-driven rehabilitation robots for accurate and dexterous assistive training for patients with neurological disorders.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom