z-logo
open-access-imgOpen Access
An Accelerated Method for Determining the Weights of Quadratic Image Filters
Author(s) -
Suleyman Uzun,
Devrim Akgun
Publication year - 2018
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2018.2838596
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Quadratic filters are usually more successful than linear filters in dealing with nonlinear noise characteristics. However, determining the proper weights for the success of quadratic filters is not straightforward as in linear case. For this purpose, a search algorithm used to train weights of quadratic filters from sample images by formulating the problem into a single objective optimization function. In the presented study, comparative inspections for training quadratic image filters using genetic algorithm (GA) and particle swarm optimization (PSO) were presented. Because computation of fitness function involves consecutive image filtering operation using candidate solutions, this process usually results in long training durations due to the computationally expensive nature of image processing applications. In order to reduce the computation times, variable and variable random fitness methods were implemented, where the image size varied in the computation of fitness function. Experimental results show that proposed algorithm provides about 2.5 to 3.0 fold acceleration in computation durations using both GA and PSO.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom