Bit-Plane Extracted Moving-Object Detection Using Memristive Crossbar-CAM Arrays for Edge Computing Image Devices
Author(s) -
Nazgul Dastanova,
Sultan Duisenbay,
Olga Krestinskaya,
Alex Pappachen James
Publication year - 2018
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2018.2819986
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
In this paper, we present the hardware implementation of a novel algorithm for moving-object detection, which can be integrated with CMOS image sensors. Bit planes of consecutive frames are stored in memristive crossbar arrays and compared using threshold-logic XOR gates. The resulting outputs are combined using weighted summation circuits and thresholded using comparators, to obtain binary images. A resistive content-addressable memory (CAM) array is used in the output stage to observe the numbers of different object pixels in the first and second pairs of the processed frames, in a row-by-row manner. The CAM array output conveys information on the motion direction and allows for optimal memory utilization through the selective row-wise storage of different bits. The proposed method outperforms the conventional moving-object detection algorithms, in terms of accuracy, specificity, and positive prediction metrics, and performs comparably in terms of other metrics.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom