z-logo
open-access-imgOpen Access
A Survey on Security Threats and Defensive Techniques of Machine Learning: A Data Driven View
Author(s) -
Qiang Liu,
Pan Li,
Wentao Zhao,
Wei Cai,
Shui Yu,
Victor C. M. Leung
Publication year - 2018
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2018.2805680
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Machine learning is one of the most prevailing techniques in computer science, and it has been widely applied in image processing, natural language processing, pattern recognition, cybersecurity, and other fields. Regardless of successful applications of machine learning algorithms in many scenarios, e.g., facial recognition, malware detection, automatic driving, and intrusion detection, these algorithms and corresponding training data are vulnerable to a variety of security threats, inducing a significant performance decrease. Hence, it is vital to call for further attention regarding security threats and corresponding defensive techniques of machine learning, which motivates a comprehensive survey in this paper. Until now, researchers from academia and industry have found out many security threats against a variety of learning algorithms, including naive Bayes, logistic regression, decision tree, support vector machine (SVM), principle component analysis, clustering, and prevailing deep neural networks. Thus, we revisit existing security threats and give a systematic survey on them from two aspects, the training phase and the testing/inferring phase. After that, we categorize current defensive techniques of machine learning into four groups: security assessment mechanisms, countermeasures in the training phase, those in the testing or inferring phase, data security, and privacy. Finally, we provide five notable trends in the research on security threats and defensive techniques of machine learning, which are worth doing in-depth studies in future.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom