Real-Time Detection of Power System Disturbances Based on $k$ -Nearest Neighbor Analysis
Author(s) -
Lianfang Cai,
Nina F. Thornhill,
Stefanie Kuenzel,
Bikash C. Pal
Publication year - 2017
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2017.2679006
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Efficient disturbance detection is important for power system security and stability. In this paper, a new detection method is proposed based on a time series analysis technique known as k-nearest neighbor (kNN) analysis. Advantages of this method are that it can deal with the electrical measurements with oscillatory trends and can be implemented in real time. The method consists of two stages, which are the off-line modeling and the on-line detection. The off-line stage calculates a sequence of anomaly index values using kNN on the historical ambient data and then determines the detection threshold. Afterward, the online stage calculates the anomaly index value of presently measured data by readopting kNN and compares it with the established threshold for detecting disturbances. To meet the real-time requirement, strategies for recursively calculating the distance metrics of kNN and for rapidly picking out the kth smallest metric are built. Case studies conducted on simulation data from the reduced equivalent model of the Great Britain power system and measurements from an actual power system in Europe demonstrate the effectiveness of the proposed method.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom