z-logo
open-access-imgOpen Access
Heterogeneity-Aware Task Allocation in Mobile Ad Hoc Cloud
Author(s) -
Ibrar Yaqoob,
Ejaz Ahmed,
Abdullah Gani,
Salimah Mokhtar,
Muhammad Imran
Publication year - 2017
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2017.2669080
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Mobile Ad Hoc Cloud (MAC) enables the use of a multitude of proximate resource-rich mobile devices to provide computational services in the vicinity. However, inattention to mobile device resources and operational heterogeneity-measuring parameters, such as CPU speed, number of cores, and workload, when allocating task in MAC, causes inefficient resource utilization that prolongs task execution time and consumes large amounts of energy. Task execution is remarkably degraded, because the longer execution time and high energy consumption impede the optimum use of MAC. This paper aims to minimize execution time and energy consumption by proposing heterogeneity-aware task allocation solutions for MAC-based compute-intensive tasks. Results of the proposed solutions reveal that incorporation of the heterogeneity-measuring parameters guarantees a shorter execution time and reduces the energy consumption of the compute-intensive tasks in MAC. A system model is developed to validate the proposed solutions' empirical results. In comparison with random-based task allocation, the proposed five solutions based on CPU speed, number of core, workload, CPU speed and workload, and CPU speed, core, and workload reduce execution time up to 56.72%, 53.12%, 56.97%, 61.23%, and 71.55%, respectively. In addition, these heterogeneity-aware task allocation solutions save energy up to 69.78%, 69.06%, 68.25%, 67.26%, and 57.33%, respectively. For this reason, the proposed solutions significantly improve tasks' execution performance, which can increase the optimum use of MAC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom