Performance Analysis for Downlink Relaying Aided Non-Orthogonal Multiple Access Networks With Imperfect CSI Over Nakagami- ${m}$ Fading
Author(s) -
Jinjin Men,
Jianhua Ge,
Chensi Zhang
Publication year - 2017
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2016.2631482
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Non-orthogonal multiple access (NOMA) has been conceived as a breakthrough technology for the fifth generation (5G) wireless networks. With imperfect channel state information (ICSI) taken into account, we study an NOMA-based downlink amplify-and-forward (AF) relaying network under Nakagami-m fading in this paper. First, we investigate the system outage behavior, and close-form expressions for the exact and tight lower bounds of the outage probability are attained, respectively. By further evaluating the outage probability at the high SNR region, it is observed that an error floor exists in the outage probability due to the presence of ICSI. Finally, numerical results are presented to demonstrate the validity of our analysis and show the advantages of NOMA over conventional orthogonal multiple access. Moreover, simulation results verify that the optimal relay location for NOMA should be close to the source node.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom