Facial Emotion Recognition Based on Biorthogonal Wavelet Entropy, Fuzzy Support Vector Machine, and Stratified Cross Validation
Author(s) -
Yu-Dong Zhang,
Zhang-Jing Yang,
Hui-Min Lu,
Xing-Xing Zhou,
Preetha Phillips,
Qing-Ming Liu,
Shui-Hua Wang
Publication year - 2016
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2016.2628407
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Emotion recognition represents the position and motion of facial muscles. It contributes significantly in many fields. Current approaches have not obtained good results. This paper aimed to propose a new emotion recognition system based on facial expression images. We enrolled 20 subjects and let each subject pose seven different emotions: happy, sadness, surprise, anger, disgust, fear, and neutral. Afterward, we employed biorthogonal wavelet entropy to extract multiscale features, and used fuzzy multiclass support vector machine to be the classifier. The stratified cross validation was employed as a strict validation model. The statistical analysis showed our method achieved an overall accuracy of 96.77±0.10%. Besides, our method is superior to three state-of-the-art methods. In all, this proposed method is efficient.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom