Healthcare Big Data Voice Pathology Assessment Framework
Author(s) -
M. Shamim Hossain,
Ghulam Muhammad
Publication year - 2016
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2016.2626316
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
The fast-growing healthcare big data plays an important role in healthcare service providing. Healthcare big data comprise data from different structured, semi-structured, and unstructured sources. These data sources vary in terms of heterogeneity, volume, variety, velocity, and value that traditional frameworks, algorithms, tools, and techniques are not fully capable of handling. Therefore, a framework is required that facilitates collection, extraction, storage, classification, processing, and modeling of this vast heterogeneous volume of data. This paper proposes a healthcare big data framework using voice pathology assessment (VPA) as a case study. In the proposed VPA system, two robust features, MPEG-7 low-level audio and the interlaced derivative pattern, are used for processing the voice or speech signals. The machine learning algorithms in the form of a support vector machine, an extreme learning machine, and a Gaussian mixture model are used as the classifier. In the experiments, the proposed VPA system shows its efficiency in terms of accuracy and time requirement.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom