z-logo
open-access-imgOpen Access
Asymptotic Mean and Variance of Gini Correlation Under Contaminated Gaussian Model
Author(s) -
Rubao Ma,
Weichao Xu,
Shun Liu,
Yun Zhang,
Jianbin Xiong
Publication year - 2016
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2016.2622358
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
This paper establishes the asymptotic closed forms of the expectation and variance of the Gini correlation (GC) under a particular type of bivariate contaminated Gaussian model emulating a frequently encountered scenario in statistical signal processing. Monte Carlo simulation results verify the correctness of the theoretical results established in this paper. In order to gain further insight into GC, we also compare GC to Pearson's product moment correlation coefficient, Kendall's tau, and Spearman's rho by means of root mean squared error. The newly explored theoretical and simulational findings not only deepen the understanding of the rather new GC, but also shed new light on the topic of correlation theory, which is widely applied in statistical signal processing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom