z-logo
open-access-imgOpen Access
Extrinsic Information Modification in the Turbo Decoder by Exploiting Source Redundancies for HEVC Video Transmitted Over a Mobile Channel
Author(s) -
Ryan Perera,
Hemantha Kodikara Arachchi,
Muhammad Ali Imran,
Pei Xiao
Publication year - 2016
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2016.2619259
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
An iterative turbo decoder-based cross layer error recovery scheme for compressed video is presented in this paper. The soft information exchanged between two convolutional decoders is reinforced both by channel coded parity and video compression syntactical information. An algorithm to identify the video frame boundaries in corrupted compressed sequences is formulated. This paper continues to propose algorithms to deduce the correct values for selected fields in the compressed stream. Modifying the turbo extrinsic information using these corrections acts as reinforcements in the turbo decoding iterative process. The optimal number of turbo iterations suitable for the proposed system model is derived using EXIT charts. Simulation results reveal that a transmission power saving of 2.28% can be achieved using the proposed methodology. Contrary to typical joint cross layer decoding schemes, the additional resource requirement is minimal, since the proposed decoding cycle does not involve the decompression function.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom