z-logo
open-access-imgOpen Access
An Energy-Efficient ECC Processor of UHF RFID Tag for Banknote Anti-Counterfeiting
Author(s) -
Xi Tan,
Mianxiong Dong,
Cheng Wu,
Kaoru Ota,
Junyu Wang,
Daniel W. Engels
Publication year - 2017
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2016.2615003
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
In this paper, we present the design and analysis of an energy-efficient 163-b elliptic curve cryptographic (ECC) processor suitable for passive ultrahigh frequency (UHF) radio frequency identification (RFID) tags that are usable for banknote authentication and anti-counterfeiting. Even partial public key cryptographic functionality has long been thought to consume too much power and to be too slow to be usable in passive UHF RFID systems. Utilizing a low-power design strategy with optimized register file management and an architecture based on the López-Dahab Algorithm, we designed a low-power ECC processor that is used with a modified ECC-DH authentication protocol. The ECC-DH authentication protocol is compatible with the ISO/IEC 18000-63 (“Gen2”) passive UHF RFID protocol. The ECC processor requires 12 145 gate equivalents. The ECC processor consumes 5.04 nJ/b at a frequency of 960 kHz when implemented in a 0.13-μm standard CMOS process. The tag identity authentication function requires 30 600 cycles to complete all scalar multiplication operations. This size, speed, and power of the ECC processor makes it practical to use within a passive UHF RFID tag and achieve up to 1500 banknote authentications per minute, which is sufficient for use in the fastest banknote counting machines.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom