A New Energy Prediction Algorithm for Energy-Harvesting Wireless Sensor Networks With Q-Learning
Author(s) -
Selahattin Kosunalp
Publication year - 2016
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2016.2606541
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Traditional wireless sensor networks (WSNs) face the problem of a limited-energy source, typically batteries, resulting in the need for careful and effective utilization of the energy source. However, inevitable energy depletion will eventually disturb the operation of a WSN. Energy harvesting (EH) technology is acquiring particular interest, because it has the potential to provide a continuous energy supply in battery-powered WSNs. Solar energy is the most effective environmental energy for EH-WSNs because of its high energy intensity, which comes from a non-controllable source. Therefore, the prediction of future energy availability is a critical issue, as the amount of the harvestable energy may vary over time. In this paper, a novel solar energy prediction algorithm with Q-learning, called Q-learning-based solar energy prediction (QL-SEP), is proposed. Q-learning is an effective way of predicting future actions based on past observations. The distinctive feature of QL-SEP is that not only past days' observations but also the current weather conditions are considered for prediction. The performance of QL-SEP is simulated in this paper using real-world measurements obtained from a solar panel in comparison with the state-of-art approaches.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom