z-logo
open-access-imgOpen Access
Joint Downlink and Uplink Interference Management for Device to Device Communication Underlaying Cellular Networks
Author(s) -
Thong Huynh,
Tomoyuki Onuma,
Kaori Kuroda,
Mikio Hasegawa,
Won-Joo Hwang
Publication year - 2016
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2016.2603149
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Interference management is one of the most critical issues in underlaying device-to-device (D2D) communication due to the coexistence of D2D pairs and cellular users that operate under the same spectrum. In this paper, we provide the interference management algorithm to maximize the performance of the D2D communication while satisfying the quality-of-service requirements of the cellular communications in both uplink and downlink phases. The proposed algorithm includes: 1) the admission control and power allocation to ensure that the interference from D2D communication does not affect to the cellular communications and 2) the shared channel assignment to maximize the total throughput of the D2D communication. We prove that our proposed algorithm can achieve at least half of the performance of optimal algorithm. The simulation results validate the feasibility, convergence, and optimality of our algorithm: it cannot only closely approximate the optimal throughput of D2D communication but also outperform existing algorithms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom