z-logo
open-access-imgOpen Access
Exposure to RF EMF From Array Antennas in 5G Mobile Communication Equipment
Author(s) -
Bjorn Thors,
Davide Colombi,
Zhig Ying,
Thomas Bolin,
Christer Tornevik
Publication year - 2016
Publication title -
ieee access
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.587
H-Index - 127
ISSN - 2169-3536
DOI - 10.1109/access.2016.2601145
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
In this paper, radio-frequency (RF) electromagnetic field (EMF) exposure evaluations are conducted in the frequency range 10-60 GHz for array antennas intended for user equipment (UE) and low-power radio base stations in 5G mobile communication systems. A systematic study based on numerical power density simulations considering effects of frequency, array size, array topology, distance to exposed part of human body, and beam steering range is presented whereby the maximum transmitted power to comply with RF EMF exposure limits specified by the International Commission on Non-Ionizing Radiation Protection, the US Federal Communications Commission, and the Institute of Electrical and Electronics Engineers is determined. The maximum transmitted power is related to the maximum equivalent isotropically radiated power to highlight the relevance of the output power restrictions for a communication channel. A comparison between the simulation and measurement data is provided for a canonical monopole antenna. For small distances, with the antennas transmitting directly toward the human body, it is found that the maximum transmitted power is significantly below the UE power levels used in existing third and fourth generation mobile communication systems. Results for other conceivable exposure scenarios based on technical solutions that could allow for larger output power levels are also discussed. The obtained results constitute valuable information for the design of future mobile communication systems and for the standardization of EMF compliance assessment procedures of 5G devices and equipment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom