Suppression of Virus Accumulation in Transgenic Plants Exhibiting Silencing of Nuclear Genes.
Author(s) -
James J. English,
Elisabeth Mueller,
David C. Baulcombe
Publication year - 1996
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.8.2.179
Subject(s) - biology , gene silencing , transgene , gene , coding region , potato virus x , rna silencing , dna methylation , virus , genetics , microbiology and biotechnology , gene expression , rna interference , rna
Homology-dependent gene silencing contributes to variation between transgenic plants with respect to transgene and/or endogenous gene expression levels. Recent studies have linked post-transcriptional gene silencing and virus resistance in plants expressing virus-derived transgenes. Using a potato virus X vector, we present three examples in which silencing of nonviral transgenes prevented virus accumulation. This effect was dependent on sequence homology between the virus and the silenced transgene. Analysis of potato virus X derivatives carrying bacterial [beta]-glucuronidase (GUS) sequences showed that the 3[prime] region of the GUS coding sequence was a target of the silencing mechanism in two independent tobacco lines. Methylation of the silenced GUS transgenes in these lines was also concentrated in the 3[prime] region of the GUS coding sequence. Based on this concurrence, we propose a link between the DNA-based transgene methylation and the RNA-based gene silencing process.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom