z-logo
open-access-imgOpen Access
Characterization of a novel arginine/serine-rich splicing factor in Arabidopsis.
Author(s) -
Sergiy Lopato,
Elisabeth Waigmann,
Andrea Barta
Publication year - 1996
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.8.12.2255
Subject(s) - rna splicing , splicing factor , biology , sr protein , rna recognition motif , alternative splicing , arabidopsis , exonic splicing enhancer , genetics , rna binding protein , gene , intron , homology (biology) , protein splicing , serine , microbiology and biotechnology , rna , messenger rna , phosphorylation , mutant
Many splicing factors in vertebrate nuclei belong to a class of evolutionarily conserved proteins containing arginine/serine (RS) or serine/arginine (SR) domains. Previously, we demonstrated the existence of SR splicing factors in plants. In this article, we report on a novel member of this splicing factor family from Arabidopsis designated atRSp31. It has one N-terminal RNA recognition motif and a C-terminal RS domain highly enriched in arginines. The RNA recognition motif shows significant homology to all animal SR proteins identified to date, but the intermediate region does not show any homology to any other known protein. Subsequently, we characterized two cDNAs from Arabidopsis that are highly homologous to atRSp31 (designated atRSp35 and atRSp41). Their deduced amino acid sequences indicate that these proteins constitute a new family of RS domain splicing factors. Purified recombinant atRSp31 is able to restore splicing in SR protein-deficient human S100 extracts. This indicates that atRSp31 is a true plant splicing factor and plays a crucial role in splicing, similar to that of other RS splicing factors. All of the three genes are differentially expressed in a tissue-specific manner. The isolation of this new plant splicing factor family enlarges the essential group of RS domain splicing factors. Furthermore, because no animal equivalent to this protein family has been identified to date, our results suggest that these proteins play key roles in constitutive and alternative splicing in plants.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom