z-logo
open-access-imgOpen Access
Adaptations to Environmental Stresses.
Author(s) -
Hans J. Bohnert,
Donald E. Nelson,
Richard G. Jensen
Publication year - 1995
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.7.7.1099
Subject(s) - biology , abiotic component , metabolite , amino acid , abiotic stress , biochemistry , botany , gene , ecology
Environmental stresses come in many forms, yet the most prevalent stresses have in common their effect on plant water status. The availability of water for its biological roles as solvent and transport medium, as electron donor in the Hill reaction, and as evaporative coolant is often impaired by environmental conditions. Although plant species vary in their sensitivity and response to the decrease in water potential caused by drought, low temperature, or high salinity, it may be assumed that all plants have encoded capability for stress perception, signaling, and response. First, most cultivated species have wild relatives that exhibit excellent tolerance to abiotic stresses. Second, biochemical studies have revealed similarities in processes induced by stress that lead to accumulated metabolites in vascular and nonvascular plants, algae, fungi, and bacteria (Csonka, 1989; Galinski, 1993; Potts, 1994). These metabolites include nitrogen-containing compounds (proline, other amino acids, quaternary amino compounds, and polyamines) and hydroxyl compounds (sucrose, polyols, and oligosaccharides) (McCue and Hanson, 1990). Accumulation of any single metabolite is not restricted to taxonomic groupings, indicating that these are evolutionarily old traits. Third, molecular studies have revealed that a wide variety of species express a common set of genes and similar proteins (for example, Rab-related proteins and dehydrins) when stressed (Skriver and Mundy, 1990; Vilardell et al., 1994). Although functions for many of these genes have not yet been unequivocally assigned, it is likely, based on their characteristics, that these proteins play active roles in the response to stress. Learning about the biochemical and molecular mechanisms by which plants tolerate environmentat stresses is necessary for genetic engineering approaches to improving crop performance under stress. By investigating plants under stress, we can learn about the plasticity of metabolic pathways and the limits to their functioning. Also, questions of an ecological and evolutionary nature need investigation. Are the genes that confer salt tolerance on halophytes and/or drought tolerance on xerophytes evolutionarily ancient genes that have been selected against in saltand drought-sensitive plants (glycophytes) for the sake of productivity? Or have some species obtained nove1 genes in their evolutionary history that have enabled them to occupy stressful environments? How will the

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom