Phytochrome A and phytochrome B mediate the hypocotyl-specific downregulation of TUB1 by light in arabidopsis.
Author(s) -
WeiMing Leu,
Xianhua Cao,
Theresa J. Wilson,
D. Peter Snustad,
NamHai Chua
Publication year - 1995
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.7.12.2187
Subject(s) - phytochrome , phytochrome a , biology , arabidopsis , etiolation , downregulation and upregulation , hypocotyl , microbiology and biotechnology , northern blot , gene expression , far red , transgene , tubulin , mutant , gene , genetics , botany , biochemistry , microtubule , red light , enzyme
Arabidopsis contains six alpha-tubulin and nine beta-tubulin genes that are expressed in a tissue-specific and developmentally regulated manner. We analyzed the effects of light on tubulin mRNA abundance in Arabidopsis seedlings using RNA gel blot hybridizations and gene-specific probes. Transcript levels of all 15 tubulin genes were decreased by continuous white light, although to different degrees. Detailed analysis was performed with the beta-tubulin TUB1 gene. The transcript level of TUB1 was high in etiolated seedlings and decreased to approximately 20% of the dark mRNA level after 2 to 6 hr of white light treatment. We showed that this downregulation requires high-irradiance light treatment and that multiple photoreceptors are involved. In particular, using phytochrome mutants and narrow wave band light, we demonstrated that both the phytochrome A (phyA)-mediated far-red light high-irradiance response and the phytochrome B (phyB)-mediated red light high-irradiance response are involved in the downregulation of TUB1 expression by white light. Histochemical analysis of transgenic plants expressing a TUB1-beta-glucuronidase chimeric transgene indicated that the downregulation observed only in hypocotyls and not in roots is controlled transcriptionally.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom