The lysine-dependent stimulation of lysine catabolism in tobacco seed requires calcium and protein phosphorylation.
Author(s) -
Hagai Karchi,
Diogo Miron,
Sari BenYaacov,
Gad Galili
Publication year - 1995
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.7.11.1963
Subject(s) - lysine , biology , biochemistry , reductase , catabolism , stimulation , egta , phosphorylation , phosphatase , enzyme , amino acid , calcium , chemistry , endocrinology , organic chemistry
The accumulation of free lysine in tobacco seed triggers the stimulation of lysine-ketoglutarate reductase, an enzyme that acts in lysine catabolism. The mechanism of lysine-ketoglutarate reductase stimulation was studied in two different systems: (1) developing seeds of wild-type plants in which the low basal lysine-ketoglutarate reductase activity can be stimulated by the exogenous addition of lysine; and (2) developing seeds of transgenic tobacco plants expressing a bacterial dihydrodipicolinate synthase in which lysine-ketoglutarate reductase activity is stimulated by endogenous lysine overproduction. In both systems, the stimulation of lysine-ketoglutarate reductase activity was significantly reduced when treated with the Ca2+ chelator EGTA. Moreover, the inhibitory effect of EGTA was overcome by the addition of Ca2+ but not Mg2+, suggesting that the lysine-dependent activation of lysine-ketoglutarate reductase requires Ca2+. This was further confirmed by a significant stimulation of lysine-ketoglutarate reductase activity following the treatment of wild-type seeds with ionomycin (an ionophore that increases Ca2+ flow into the cytoplasm). In addition, treatment of wild-type seeds with the protein phosphatase inhibitor okadaic acid triggered a significant induction in lysine-ketoglutarate reductase activity, whereas treatment of the transgenic seeds with the protein kinase inhibitor K-252a caused a significant reduction in its activity. Thus, we conclude that the stimulation of lysine-ketoglutarate reductase activity by lysine in tobacco seed operates through an intracellular signaling cascade mediated by Ca2+ and protein phosphorylation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom