Coordinated Activation of Programmed Cell Death and Defense Mechanisms in Transgenic Tobacco Plants Expressing a Bacterial Proton Pump.
Author(s) -
Ron Mittler,
Vladimir Shulaev,
Eric Lam
Publication year - 1995
Publication title -
the plant cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.324
H-Index - 341
eISSN - 1532-298X
pISSN - 1040-4651
DOI - 10.1105/tpc.7.1.29
Subject(s) - hypersensitive response , biology , programmed cell death , transgene , microbiology and biotechnology , pathogen , genetically modified mouse , genetically modified crops , cell , genetics , gene , apoptosis
In plants, programmed cell death is thought to be activated during the hypersensitive response to certain avirulent pathogens and in the course of several differentiation processes. We describe a transgenic model system that mimics the activation of programmed cell death in higher plants. In this system, expression of a bacterial proton pump in transgenic tobacco plants activates a cell death pathway that may be similar to that triggered by recognition of an incompatible pathogen. Thus, spontaneous lesions that resemble hypersensitive response lesions are formed, multiple defense mechanisms are apparently activated, and systemic resistance is induced in the absence of a pathogen. Interestingly, mutation of a single amino acid in the putative channel of this proton pump renders it inactive with respect to lesion formation and induction of resistance to pathogen challenge. This transgenic model system may provide insights into the mechanisms involved in mediating cell death in higher plants. In addition, it may also be used as a general agronomic tool to enhance disease protection.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom